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Abstract. Human Activity Recognition is a field that provides the fun-
damentals for Ambient Intelligence and Assisted Living Applications.
Multimodal methods for Human Activity Recognition utilize different
sensors and fuse them together to provide higher-accuracy results. These
methods require data for all sensors employed to operate with. In this
work we present a sensor-independent, in regards to the number of sen-
sors used, scheme for designing multimodal methods that operate when
sensor-data are missing. Furthermore, we present a data augmentation
method that increases the fusion model’s accuracy (up to 11% increases)
when operating with missing sensor-data. The proposed method’s effec-
tiveness is evaluated on the ExtraSensory dataset, which contains over
300,000 samples from 60 users, collected from smartphones and smart-
watches. In addition, the methods are evaluated for different number of
sensors used at the same time. However, the max number of sensors must
be known beforehand.

Keywords: Automatic Human Activity Recognition · multimodal fu-
sion · sensor fusion · sensor-independent fusion.

1 Introduction

Automatic Human Activity Recognition (HAR) is a field that constitutes the
fundamentals of Ambient Intelligence (Aml) and Assisted Living Applications
(AAL). It comprises the challenges of recognizing and understanding human
activities and their context which are the basic pre-requisites for integrating
human-aware machine decision capabilities. Human Activity Recognition can be
performed using static sensors (e.g., mounted video camera [22]) or wearable
sensors (e.g., smart watch or other wearable sensors [15]) or by combining both.

There is a plethora of methods to perform human activity recognition [17].
The main categories are (i) unimodal and (ii) multimodal human activity recog-
nition methods, according to the type of sensor they employ. Unimodal methods
utilize data from a single modality, such as audio signal. These methods can be
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categorized into (i) space-time, (ii) stochastic, (iii) rule-based and (iv) shape-
based methods. On the other hand Multimodal methods combine features from
different sources (such as combining features from audio sensors with features
from video sensors) [19] and can be categorized to: (i) affective, (ii) behavioral
and (iii) social networking methods.

In this work we present a sensor-independent fusion method in respect to
the number of sensors utilized. In addition to this, we introduce a data aug-
mentation method that augments the collected data with sub-sets of utilized
sensor data per observation, and apply these methods to fuse unimodal models
for the ExtranSensory dataset [16]. This dataset served as a test-case for our
proposed methods. Our methods can be used with any model that fuses a num-
ber of unimodal models for a set of sensors. The ExtraSensory dataset contains
over 300,000 examples from 60 users of diverse ethnic backgrounds, collected
from smartphones and smartwatches. It includes heterogeneous measurements
from a variety of wearable sensors (i.e., accelerometer, gyroscope, magnometer,
watch compass, audio etc.). Not all the sensors were available at all times, some
phones did not have some sensors, whereas in other cases sensors were sometimes
unavailable.

The remainder of the paper is structured as follows: A brief review of the
related work is presented in the next section. Afterwards we present our methods
for sensor-independent (in respect to the number of sensors) fusion and for data
augmentation. We evaluate our methods on a set of experiments and discuss
the results. Finally, we conclude the paper and present our directions for future
work.

2 Related Work

In the recent years due to the rise of IoT devices and smart living environments,
a lot of research has been conducted related to human activity recognition and
many methods have been developed and applied. In introduction section is men-
tioned that the methods are distinguished in five major categories, space-time,
stochastic, rule-based, shape-based and multimodal methods. In this chapter, we
are presenting a brief literature review related to multimodal methods for human
activity recognition in order to place our work in the current state-of-the-art and
to indicate innovation and contribution of our work in the field.

As an event or action can be described by different types of data and fea-
tures that provide more and useful information, several multimodal methods for
human activity recognition are based on fusion techniques [4]. In [12] the multi-
modal fusion for human activity detection is further classified in data and feature
fusion methods. In [19] a decision fusion method is also considered. The latter
is not a direct fusion scheme as it firstly applies separate classifiers to obtain
probability scores and combines them for final decision making [7, 21]. Since the
current work is considered as a more direct type of fusion, the relevant works in
this section are presented based on data and feature methods classification. Data
fusion aims to increase accuracy, robustness and reliability of a system devoted
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to human activity recognition as this type of fusion involves integration of data
collected by multiple mobile and wearable sensor devices. The work of [20] intro-
duces a deep learning framework named DeepSense, targeting to overcome noise
and feature customization challenges in order to increase recognition accuracy.
The framework exploits interactions among different sensory modalities by inte-
grating convolutional and recurrent neural networks to sensors. To the same aim
[13] proposes a deep learning framework for activity recognition based on con-
volutional and LSTM recurrent units. The framework is suitable for multimodal
wearable sensors as it can perform sensor fusion naturally without requiring ex-
pert knowledge in designing features. In [14] the authors introduce an activity
recognition system to be used for elderly people monitoring. The system collects
and combines data from sensors such as state sensors at doors, movement sen-
sors in rooms and sensors attached to appliances or furniture pieces. However,
the activity recognition is enabled just by using some multiple Hidden Markov
Models (HMMs). A combination of HMMs and neural networks for multi-sensor
fusion for human daily activity recognition has been introduced in [23]. The so-
lution was based on wearable sensors and tested in a robot-assisted living system
for elderly people environment. Other similar approaches such as [10] are based
on information fusion of features extracted from experimental data collected by
different sensors, such as a depth camera, an accelerometer and a micro-Doppler
radar. The authors create combinations of the aforementioned sensors data for
classification of the activity. They found that the addition of more sensors was
continuously improving the accuracy of classification. In particular, the authors
have measured the accuracy of quadratic-kernel SVM classifier and of an En-
semble classifier.

In order to further increase the accuracy and to improve performance of ac-
tivity recognition systems some fusion methods at the features level have been
developed in previous years. Feature fusion techniques enable the combination
of features extracted from sensor data with machine learning algorithms. This
type of fusion is used in the current work as well. Regarding the sensors used for
activity recognition they are lay on various categories such as (a) 3D sensors [9,
1, 18] for recognising activities such as walking, running or sitting, (b) thermal
cameras [3, 11] for household activity recognition and (c) event cameras [8] for
event-based activity detection or even activity tracking applications [2]. In [6]
a multimodal feature-level fusion approach for robust human action recognition
was proposed. The approach utilizes data from multiple sensors such as depth
sensor, RGB camera, and wearable inertial sensors. The recognition framework
was tested on a publicly available dataset including over 25 different human ac-
tions. For training and testing the proposed fusion model, SVM classifiers and
K-nearest neighbor were used. The authors observed that better results were
produced by using more sensors in the fusion. However, the achieved accuracy
improvement had some significant loses (over 10%) in terms of performance com-
paring to fusion approaches with less sensors combinations. In another approach
[19] a human action recognition with multimodal feature selection and fusion
based on videos was introduced. The authors extracted both audio and visual
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features from a public dataset/video and used them as input for a set of SVM
classifiers. The outputs were fused to obtain a final classification score through
fuzzy integral and two-layer SVM. The authors observed that audio context is
more useful than visual one but the audio is not always helpful for some actions
due to its high diversity. Recently, in [5] the authors proposed an intelligent
sensor fusion strategy for activity recognition in body sensor networks that very
often have uncertain or even incomplete data. Their approach was based on the
Dezert-Smarandache theory. In this, as training dataset they employed kernel
density estimation (KDE)-based models for sensors readings and they selected
the best discriminative model of them. A testing dataset was also used in order
to calculate basic belief assignments based on KDE models for each activity. Fi-
nally, the calculated belief assignments were combined with redistribution rules
for final decision-making. The authors concluded that their approach outper-
formed state-of-the-art methods in accuracy, as it was tested and compared in
two public datasets.

In this work, a novel feature fusion method that provides high accuracy and
robustness in the human activity recognition, in comparison to aforementioned
data fusion techniques, is introduced. Furthermore, the introduced approach pro-
vides a fusion method that is sensor-independent, in terms of sensors’ number.
Opposite to other fusion approaches that were introduced in the previous para-
graph, our approach does not require to recreate the fusion model in the case
that less sensors are available. Another improvement that the method introduces
in comparison with the above-mentioned fusion methods, is the data augmen-
tation technique that was applied. This technique augments the collected data
with sub-sets of utilized sensor data per observation. By adding combinations
of existing sensor data the amount of the available data is increased, so the
method’s accuracy with regards to human activity recognition is increased as
well.

3 Methods

Seven unimodal classifiers were given, which are considered as black boxes for
the scope of this paper, where each one classifies human daily activities according
to a specific sensor from the ExtraSensory dataseset. Each classifier applies to
one of the following sensors:

– Watch Accelerometer (WA)
– Watch Compass (WC)
– Phone Accelerometer (PA)
– Phone Gyroscope (PG)
– Phone Magnet (PM)
– Phone State (PS)
– Audio (A)

In Table 1 the F1 scores of the seven classifiers in regards to their respective
test sets (which are sub-sets of the test set containing only the observations that
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Table 1. Unimodal classifiers F1-scores

classes WA F1 WC F1 PA F1 PG F1 PM F1 PS F1 A F1

SITTING-TOILET 0.23 0.0 0.0 0.0 0.0 0.08 0.13
SITTING-EATING 0.7 0.38 0.064 0.0 0.0 0.26 0.42
STANDING-COOKING 0.09 0.0 0.0 0.13 0.13 0.0 0.33
SITTING-WATCHING TV 0.05 0.0 0.67 0.57 0.57 0.72 0.83
LYING DOWN-WATCHING TV 0.63 0.0 0.28 0.18 0.18 0.37 0.58
STANDING-EATING 0.24 0.49 0.47 0.22 0.22 0.62 0.69
STANDING-CLEANING 0.63 0.0 0.4 0.19 0.19 0.69 0.77
WALKING-EATING 0.43 0.0 0.27 0.38 0.38 0.43 0.6
STANDING-WATCHING TV 0.33 0.46 0.3 0.27 0.27 0.54 0.59
STANDING-TOILET 0.29 0.31 0.59 0.5 0.5 0.7 0.79
WALKING-WATCHING TV 0.49 0.0 0.1 0.08 0.08 - 0.63
WALKING-COOKING 0.42 0.0 0.39 0.11 0.11 0.37 0.51
SITTING-COOKING 0.59 0.0 0.35 0.38 0.38 0.67 0.68
WALKING-CLEANING 0.05 0.0 0.19 0.1 0.1 0.11 0.48
LYING DOWN-EATING 0.16 0.0 0.62 0.58 0.58 0.24 0.73
SITTING-CLEANING 0.15 0.0 0.0 0.0 0.0 0.16 0.27

accuracy 0.55 0.4 0.5 0.45 0.45 0.65 0.74
macro avg 0.34 0.1 0.29 0.23 0.23 0.4 0.57
weighted avg 0.55 0.34 0.52 0.43 0.43 0.64 0.75

contain data for their respective sensors) are presented. A dash “-” denotes that
there were no observations of the respective sensor for that class. There are 16
daily activity classes. Each of the seven classifiers contains a 32-node dense layer
followed by a softmax layer at their end.

3.1 Sensor Independent Fusion Model

For the fusion model a feed-forward Artificial Neural Network was used. The
softmax layer for each unimodal model was discarded so when simulating each
of the models we obtain a feature vector of length 32 (the output of the penul-
timate layer of the unimodal models). These feature vectors provide the inputs
to their respective unimodal models’ softmax layers, and thus contain the activ-
ity information extracted from the data before being converted to a probability
distribution by the softmax layer. Each unimodal model is simulated using its
design features from observations of its respective sensor.

The input layer is defined with a length of 32 multiplied by the number of
sensors. To provide sensor independence in respect to the number of sensors
used we add a binary vector to the input layer of the network with length equal
to the number of sensors. So for our specific case the input layer has a size of
32 · 7 + 7 = 231.

Fs11Fs12 ...Fs132 ...Fs71Fs72 ...Fs732 ...Facts7,Facts6 ... Facts1

↑ ↑ ↑
The diagram above illustrates the input layer of the fusion model. Fs11 de-

notes the first feature of the first sensor, Fs132 denotes the last feature of the first
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Algorithm 1 Create Fusion model training set

0: procedure create dataset(train, feature sensors, unimodal models, sensors)
1: T ← [0]len(train)×32·len(sensors)+len(sensors) {Matrix of zeros}
2: for each sensor k ranging from 0 to len(sensors)− 1 do
3: train s← train[feature sensors[sensors[k]]]
4: train sn← train s.dropna()
5: idxs← train sn.index
6: feature matrix← simulate model(unimodal models[sensors[k]], train sn)
7: for each observation i ranging from 0 to len(T )− 1 do
8: if i ∈ idxs then
9: T [i, T.no of cols–k–1]← 1
10: end if
11: end for
12: for each observation i ranging from 0 to len(feature matrix)− 1 do
13: T [idxs[i], k · 32 : (k + 1) · 32]← feature matrix[i]
14: end for
15: end for
16: return T

sensor, whereas Facts1 denotes the binary feature that actives/deactivates sensor
1 input for the fusion model. When Facts1 is set to 0, the features corresponding
to sensor 1 input, that is the features from Fs11 to Fs132 are set to 0 too. When
Facts1 is set to 1, the input features corresponding to sensor 1 on the input of the
fusion model are set to the 32 values of the feature vector which is the output
of the respective unimodal model for sensor 1. In a similar manner we set the
other sensor inputs. The fusion model performs feature-level fusion.

Algorithm 1 computes the dataset for training the fusion model. It is given
the training set (train) containing the features for all sensors, a dictionary
(feature sensors) with mappings of the form sensor name → [feature indeces],
for each sensor providing the indeces for each sensor’s features in the train-
ing set, a dictionary of the unimodal models (unimodal models) of the form
sensor name → model and a list of the sensor names (sensors). For each ob-
servation in the training set, the feature vectors of the unimodal models are
computed, in the cases when there are data available for their respective sen-
sors, and the activating feature for these sensors is set to 1. When data is missing
for a sensor, the respective features for that sensor are set to 0, as well as the
activating feature.

3.2 Data augmentation method

A data augmentation method was designed and implemented based on the
following premise: The dataset can be expanded by adding more observations
with all possible subsets of activated sensors from the sensors containing data,
in each observation of the original dataset. As an example, consider the case of
adding more data based on a single observation, where only five of the seven
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Algorithm 2 Data augmentation method

0: procedure augment data(data, Y, no of sensors, C)
1: aug data← () {Empty Sequence}
2: aug Y ← () {Empty Sequence}
3: sensor ids← {z : ∃n ∈ Z such that z = 0+1×n, and z ∈ [0, no of sensors− 1)}
4: for each observation i ranging from 0 to len(data)− 1 do

5: sources used←
data.no of cols∑

x=data.no of cols−no of sensors

data[i, x]

6: for each sensor k ranging from no of sensors− 1 to 0 in steps of −1 do
7: if k < sources used then
8: if k < C then
9: break
10: end if

11: v ←
(
sensor ids

k

)
{k-length tuples with no repetition}

12: for l ranging from 0 to len(v)− 1 do
13: OBV ← [0]data.no of cols {Vector of zeros}
14: for m ranging from 0 to len(v[l])− 1 do
15: OBV [v[l][m]·32 : (v[l][m]+1)·32]← data[i, v[l][m]·32 : (v[l][m]+1)·32]
16: OBV [data.no of cols− v[l][m]− 1]← 1
17: end for
18: aug data← aug data⌢(OBV ) {Sequence Concatenation}
19: aug Y ← aug Y ⌢(Y [i])
20: end for
21: else
22: aug data← aug data⌢(data[i, :])
23: aug Y ← aug Y ⌢(Y [i])
24: end if
25: end for
26: end for
27: return as matrix(aug data), as vector(aug Y )

sensors are utilized. The following combinations are available with only the five
sensors activated:

[(’s1’, ’s2’, ’s3’, ’s4’, ’s5’),

(’s1’, ’s2’, ’s3’, ’s4’, ’s6’),

...,

(’s2’, ’s4’, ’s5’, ’s6’, ’s7’),

(’s3’, ’s4’, ’s5’, ’s6’, ’s7’)]

For each of these cases we know the target activity, it holds the same label as
the original observation which contains data for all sensors, so we can augment
the dataset with a new observation per case, where data is provided for the
respective sensors above and the features of the missing sensor data, as well as
their respective activation features, are set to 0 in the fusion model training set.
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Table 2. Fusion Model with no data augmentation in training/validation sets, no data
augmentation in test set. Xs F1 denotes F1 scores for X sensors, Xs S denotes support

classes 2s F1 2s S 3s F1 3s S 4s F1 4s S 5s F1 5s S 6s F1 6s S 7s F1 7s S As F1 As S

SITTING-TOILET 0.50 2 0.50 2 0.84 22 0.82 145 0.69 64 0.67 18 0.38 17
SITTING-EATING 0.90 14 0.67 4 0.70 18 0.89 69 0.52 9 0.94 154 0.55 30
STANDING-COOKING 0.67 2 1.00 2 0.51 17 0.00 1 0.71 104 0.71 12 0.55 14
SITTING-WATCHING TV - - 0.80 4 0.83 47 0.87 611 0.50 2 0.43 7 0.87 2294
LYING DOWN-WATCHING TV 0.92 6 0.89 4 0.44 4 0.71 119 0.85 137 0.59 59 0.70 228
STANDING-EATING 0.97 18 0.95 30 0.50 8 0.85 328 0.65 51 0.70 90 0.78 479
STANDING-CLEANING - - - - 0.83 5 0.25 3 0.53 9 0.88 942 0.89 401
WALKING-EATING - - - - 0.67 2 0.59 15 0.86 588 0.65 27 0.73 523
STANDING-WATCHING TV - - - - 0.00 1 0.77 22 0.76 76 0.89 830 0.68 227
STANDING-TOILET 0.00 1 1.00 2 0.88 109 0.72 61 0.83 340 0.72 234 0.86 1522
WALKING-WATCHING TV - - 0.67 3 0.38 9 0.75 104 0.73 117 - - 0.70 209
WALKING-COOKING - - - - 0.00 1 0.84 26 0.50 3 0.78 208 0.72 80
SITTING-COOKING - - - - - - 0.50 1 0.81 36 0.73 60 0.74 59
WALKING-CLEANING - - - - 0.67 3 0.67 13 0.76 29 0.87 44 0.52 57
LYING DOWN-EATING - - - - - - 0.64 59 0.67 5 0.60 23 0.79 96
SITTING-CLEANING - - - - - - - - 0.51 35 0.46 8 0.58 9

accuracy 0.88 43 0.88 51 0.77 246 0.82 1577 0.80 1605 0.84 2716 0.82 6245
macro avg 0.66 43 0.81 51 0.56 246 0.66 1577 0.68 1605 0.71 2716 0.69 6245
weighted avg 0.88 43 0.88 51 0.78 246 0.82 1577 0.80 1605 0.84 2716 0.82 6245

The proposed method starts with k equals the activated sensors of each ob-
servation and loops, decreasing the number of used sensors by 1 in each iteration
and computes the combinations, that is the k-length tuples with no repetition for
each value of k until k < C where C is a constant defining the minimum number
of sensors that can be utilized. No interpolation or estimation techniques are
performed to augment the dataset, the labels for the generated data are already
known as well as the sensor data used for the new observations are the feature
vectors computed by the unimodal models for the measured sensor data.

Algorithm 2 augments the dataset based on the above method. It is given
the dataset for the fusion model (data), which is computed using Algorithm 1,
the vector of labels containing the class for each observation (Y ), the number of
sensors (no of sensors) and the constant C, defining the minimum number of
sensors utilized for the augmented dataset. For each observation in the training
set, all k− tuple combinations without repetition are computed, ranging from k
equal to the number of activated sensors down to C.

4 Evaluation

To evaluate the proposed methods a set of experiments was devised to inves-
tigate the fusion model’s improvement of F1-score per class, for the whole test
set, as well as specific sub-sets of the test-set split according to the number of
sensors used per observation. The dataset was split 70%–30% into a train and
a test set. The resulting train and test sets were the ones used to train and
test the unimodal models. The training set was farther split 80%–20% during
training for the final train and validation sets. The fusion model was trained
using the Adam optimizer with lr = 0.001, using a batch size = 64 for 200
epochs using early-stopping with patience = 50 for validation accuracy, while
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Table 3. Fusion Model with no data augmentation in training/validation sets, with
data augmentation in test set. Xs F1 denotes F1 scores for X sensors, Xs S denotes
support

classes 2s F1 2s S 3s F1 3s S 4s F1 4s S 5s F1 5s S 6s F1 6s S 7s F1 7s S As F1 As S

SITTING-TOILET 0.08 357 0.10 595 0.14 595 0.22 337 0.54 135 0.63 18 0.14 1949
SITTING-EATING 0.19 630 0.25 1050 0.34 1050 0.81 6180 0.90 1215 0.92 154 0.32 3453
STANDING-COOKING 0.24 294 0.32 490 0.40 490 0.56 294 0.68 86 0.80 12 0.40 1666
SITTING-WATCHING TV 0.65 47894 0.73 78780 0.79 75044 0.82 32741 0.23 58 0.32 7 0.75 242583
LYING DOWN-WATCHING TV 0.36 4748 0.46 7808 0.54 7533 0.59 3295 0.85 7182 0.60 59 0.49 24168
STANDING-EATING 0.50 10059 0.59 16765 0.66 16017 0.68 6697 0.73 1560 0.71 90 0.62 51306
STANDING-CLEANING 0.46 8040 0.61 13234 0.73 12618 0.47 570 0.67 694 0.88 942 0.64 41442
WALKING-EATING 0.41 10943 0.50 18099 0.56 16497 0.62 7490 0.87 6150 0.68 27 0.52 55018
STANDING-WATCHING TV 0.40 4626 0.49 7632 0.57 7494 0.55 2414 0.67 1755 0.90 830 0.51 22690
STANDING-TOILET 0.57 31899 0.67 53029 0.75 52447 0.81 24898 0.58 464 0.71 234 0.70 169256
WALKING-WATCHING TV 0.38 4327 0.48 7142 0.56 6834 0.64 2915 0.68 496 - - 0.52 21776
WALKING-COOKING 0.19 1680 0.28 2800 0.40 2732 0.51 1198 0.57 218 0.76 208 0.32 8655
SITTING-COOKING 0.41 1239 0.51 2065 0.59 1895 0.59 614 0.83 344 0.71 60 0.53 6002
WALKING-CLEANING 0.21 1197 0.28 1995 0.35 1961 0.40 916 0.63 166 0.84 44 0.31 6168
LYING DOWN-EATING 0.50 2016 0.59 3360 0.68 3326 0.78 1695 0.37 91 0.62 23 0.64 10785
SITTING-CLEANING 0.06 189 0.10 247 0.14 143 0.18 64 0.11 3 0.43 8 0.10 646

accuracy 0.53 130138 0.63 215091 0.70 206676 0.76 92318 0.81 20617 0.84 2716 0.65 667563
macro avg 0.35 130138 0.43 215091 0.51 206676 0.58 92318 0.62 20617 0.70 2716 0.47 667563
weighted avg 0.54 130138 0.63 215091 0.70 206676 0.76 92318 0.81 20617 0.84 2716 0.66 667563

Table 4. Fusion Model with data augmentation in training/validation sets, with data
augmentation in test set. Xs F1 denotes F1 scores for X sensors, Xs S denotes support

classes 2s F1 2s S 3s F1 3s S 4s F1 4s S 5s F1 5s S 6s F1 6s S 7s F1 7s S As F1 As S

SITTING-TOILET 0.13 357 0.19 595 0.23 595 0.31 337 0.60 135 0.63 18 0.21 1949
SITTING-EATING 0.31 630 0.39 1050 0.46 1050 0.86 6180 0.91 1215 0.93 154 0.43 3453
STANDING-COOKING 0.44 294 0.53 490 0.61 490 0.71 294 0.80 86 0.86 12 0.57 1666
SITTING-WATCHING TV 0.72 47894 0.78 78780 0.82 75044 0.85 32741 0.29 58 0.44 7 0.79 242583
LYING DOWN-WATCHING TV 0.45 4748 0.54 7808 0.60 7533 0.64 3295 0.87 7182 0.60 59 0.56 24168
STANDING-EATING 0.59 10059 0.66 16765 0.69 16017 0.71 6697 0.74 1560 0.71 90 0.66 51306
STANDING-CLEANING 0.65 8040 0.75 13234 0.81 12618 0.56 570 0.68 694 0.89 942 0.77 41442
WALKING-EATING 0.48 10943 0.57 18099 0.62 16497 0.66 7490 0.89 6150 0.59 27 0.58 55018
STANDING-WATCHING TV 0.45 4626 0.54 7632 0.61 7494 0.57 2414 0.69 1755 0.91 830 0.55 22690
STANDING-TOILET 0.69 31899 0.76 53029 0.81 52447 0.85 24898 0.58 464 0.72 234 0.78 169256
WALKING-WATCHING TV 0.49 4327 0.57 7142 0.63 6834 0.71 2915 0.73 496 - - 0.60 21776
WALKING-COOKING 0.38 1680 0.49 2800 0.57 2732 0.59 1198 0.58 218 0.76 208 0.51 8655
SITTING-COOKING 0.60 1239 0.67 2065 0.72 1895 0.68 614 0.86 344 0.76 60 0.67 6002
WALKING-CLEANING 0.24 1197 0.29 1995 0.32 1961 0.32 916 0.72 166 0.91 44 0.29 6168
LYING DOWN-EATING 0.66 2016 0.72 3360 0.76 3326 0.82 1695 0.31 91 0.76 23 0.74 10785
SITTING-CLEANING 0.35 189 0.41 247 0.39 143 0.35 64 0.21 3 0.33 8 0.38 646

accuracy 0.64 130138 0.71 215091 0.76 206676 0.79 92318 0.83 20617 0.85 2716 0.72 667563
macro avg 0.48 130138 0.55 215091 0.60 206676 0.64 92318 0.65 20617 0.72 2716 0.57 667563
weighted avg 0.63 130138 0.71 215091 0.75 206676 0.79 92318 0.83 20617 0.85 2716 0.72 667563

Table 5. Fusion Model with data augmentation in training/validation sets, no data
augmentation in test set. Xs F1 denotes F1 scores for X sensors, Xs S denotes support

classes 2s F1 2s S 3s F1 3s S 4s F1 4s S 5s F1 5s S 6s F1 6s S 7s F1 7s S As F1 As S

SITTING-TOILET 0.80 2 0.80 2 0.86 22 0.80 145 0.63 64 0.60 18 0.31 17
SITTING-EATING 0.86 14 0.67 4 0.73 18 0.83 69 0.60 9 0.93 154 0.52 30
STANDING-COOKING 0.80 2 1.00 2 0.55 17 0.00 1 0.68 104 0.73 12 0.57 14
SITTING-WATCHING TV - - 0.89 4 0.76 47 0.87 611 0.44 2 0.50 7 0.88 2294
LYING DOWN-WATCHING TV 1.00 6 0.75 4 0.43 4 0.67 119 0.85 137 0.63 59 0.66 228
STANDING-EATING 0.97 18 0.95 30 0.43 8 0.84 328 0.64 51 0.68 90 0.76 479
STANDING-CLEANING - - - - 0.67 5 0.00 3 0.33 9 0.89 942 0.88 401
WALKING-EATING - - - - 0.57 2 0.56 15 0.87 588 0.62 27 0.70 523
STANDING-WATCHING TV - - - - 0.00 1 0.78 22 0.74 76 0.91 830 0.72 227
STANDING-TOILET 0.00 1 0.80 2 0.84 109 0.69 61 0.83 340 0.70 234 0.87 1522
WALKING-WATCHING TV - - 0.67 3 0.29 9 0.82 104 0.71 117 - - 0.68 209
WALKING-COOKING - - - - 0.00 1 0.84 26 0.67 3 0.76 208 0.73 80
SITTING-COOKING - - - - - - 1.00 1 0.80 36 0.74 60 0.74 59
WALKING-CLEANING - - - - 0.67 3 0.60 13 0.82 29 0.89 44 0.48 57
LYING DOWN-EATING - - - - - - 0.60 59 0.55 5 0.69 23 0.80 96
SITTING-CLEANING - - - - - - - - 0.46 35 0.43 8 0.78 9

accuracy 0.91 43 0.88 51 0.74 246 0.81 1577 0.80 1605 0.85 2716 0.82 6245
macro avg 0.74 43 0.82 51 0.52 246 0.66 1577 0.66 1605 0.71 2716 0.69 6245
weighted avg 0.90 43 0.88 51 0.74 246 0.81 1577 0.80 1605 0.84 2716 0.82 6245
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reducing the learning rate when the validation accuracy has stopped improving
using factor = 0.1, patience = 2. The training set was shuffled for the training
process.

Table 2 presents the results for these experiments. The F1 columns denote
the F-1 scores per number of sensors used, whereas the S columns denote the
corresponding samples provided in the test set (support metric), e.g., 3s F1,
denotes the F1-scores for the sub-set holding the observations which utilized data
from exactly 3 sensors, whereas 3s S denotes the number of samples provided for
that sub-set (support). As denotes that the whole test-set was used (all sensor
data). The resulting model provided an accuracy of 82% on the whole test set,
whereas the sub-set containing the observations which hold data for all 7 sensors
provided an accuracy of 84%. There were fewer observations that provided data
for less than 5 sensors, according to the support metrics. The classes with larger
sample sizes (e.g., SITTING-WATCHING TV and STANDING-TOILET ) had
accuracy scores of at least 86%, whereas on the opposite spectrum classes with
too few samples (e.g., SITTING-TOILET and STANDING-COOKING) had
low scores of 38% and 55% respectively denoting balancing issues between the
classes.

The next set of experiments investigates the proposed data augmentation’s
method performance. In Table 3 we present the result of the experiments with
the test set augmented with a value of C = 2 by using Algorithm 2. In Table 4
both the training/validation sets are augmented with a value of C = 2, as well as
the test set. Finally in Table 5 only training and validation sets are augmented
with a value of C = 2. As there are more combinations of 2-sensor data than 3-
sensor data, and 3-sensor data than 4-sensor data etc., in Table 3 we can observe
a sharp drop on the accuracy of the new augmented data set, as it drops to 65%,
whereas the accuracy on the sub-set containing data for all 7-sensors remains
at 84%. In Table 4 we observe an increase of total accuracy to 72%. When
providing data for at least 4 sensors the accuracy is higher, 76% for 4-sensor
observations, 79% for 5-sensor observations and 83% for 6-sensor observations.
The largest increase of performance was 11% for 2-sensor observations. Notice
that according to Table 1 the sensor unimodal models do not perform equally.
From this premise it follows logically that not all sensor sub-sets will perform
equally (especially the 2 sensor sub-sets). In Table 5 we can observe that the
fusion model trained using the augmented training and validation sets performs
equally to the non-augmented one on the original test set with an accuracy score
of 82%. Its 2-sensor accuracy is higher though (91% versus 88% when trained
without the proposed data augmentation method).

5 Conclusions & Future Work

In this work, we proposed a sensor-independent fusion method in respect to
the number of sensors utilized for Automatic Human Activity Recognition. It
utilizes feature-level fusion. This method allows the design of fusion models that
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can operate with fewer data sources than the ones the model was designed to
operate on. However, the max number of sensors must be known beforehand.

Furthermore, to increase the fusion model’s performance when operating on
observations with fewer sensor data we proposed a data augmentation method
that uses no interpolation or estimation techniques to augment the dataset.
Instead it generates all possible combinations of utilized sensors for recorded
observations, with a minimum number of sensor data required defined by a
constant. The results showed an increase in all sub-sets of the test set, split
according to the number of sensors used per observation, indicating the method’s
effectiveness.

For the future we will investigate class balancing methods to improve the
scores for classes with fewer samples. Moreover, we will also investigate the
individual sensor contributions to the results, as well as the accuracy differences
between different combinations of sensors totaling to the same number, e.g.,
what is the difference of accuracy when using 3-sensor data between Audio,
Watch Compass, Phone Magnet and Phone State, Watch Accelerometer, Phone
Accelerometer. The goal is to generate a general method of evaluating a sensor’s
performance in the fusion model, while the unimodal models for the sensors are
considered as black boxes.
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